
  

  

Abstract— Implanted electrodes, such as those used for 
cochlear implants, brain-computer interfaces, and prosthetic 
limbs, rely on particular electrical conditions for optimal 
operation. Measurements of electrical impedance can be a 
diagnostic tool to monitor implanted electrodes for changing 
conditions arising from glial scarring, encapsulation, and 
shorted or broken wires. Such measurements provide 
information about the electrical impedance between a single 
electrode and its electrical reference, but offer no insights into 
the overall network of impedances between electrodes. Other 
solutions generally rely on geometrical assumptions of the 
arrangement of the electrodes and may not generalize to other 
electrode networks. Here, we propose a linear algebra-based 
approach, Cross-Channel Impedance Measurement (CCIM), 
for measuring a network of impedances between electrodes 
which all share a common electrical reference. This is 
accomplished by measuring the voltage response from all 
electrodes to a known current applied between each electrode 
and the shared reference, and is agnostic to the number and 
arrangement of electrodes. The approach is validated using a 
simulated 8-electrode network, demonstrating direct impedance 
measurements between electrodes and the reference with 96.6% 
± 0.2% accuracy, and cross-channel impedance measurements 
with 93.3% ± 0.6% accuracy in a typical system. Subsequent 
analyses on randomized systems demonstrate the sensitivity of 
the model to impedance range and measurement noise. 
 

Clinical Relevance—CCIM provides a system-agnostic 
diagnostic test for implanted electrode networks, which may aid 
in the longitudinal tracking of electrode performance and early 
identification of electronics failures. 

I. INTRODUCTION 

Medical devices are becoming more reliant on the 
acquisition of biosignals (EMG, EKG, EEG), especially for 
monitoring and controlling robotic devices. However, as 
greater selectivity becomes a more frequent need for these 
medical devices, researchers are turning to implantable sensors 
to acquire these signals. Implantable sensors, such as the 
epimysial, intramuscular, and cuff electrodes often used in 
prosthetic limb control [1], [2] and the microelectrode arrays 
used with neural tissues [3]–[5], are typically made of 
biologically inert materials such as platinum, titanium, or 
tungsten to maximize biocompatibility and reduce risk of 
adverse immune response [6]. However, biological responses 
and microglial processes can impair the performance of these 
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electrodes over time. Thus, the monitoring of these electrodes 
is imperative for researchers in these fields [7]. 

The connectivity of electrodes is commonly monitored by 
measuring the electrical impedance between electrodes and the 
reference. This is commonly done by sending electrical current 
with a known amplitude between each electrode and its 
reference, and measuring the resulting voltage [8]. Although 
this simple method can provide information about the general 
connectivity for each electrode, it fails to provide detailed 
information about the network of impedances between 
electrodes, and therefore cannot diagnose issues such as 
shorted electrodes. Other approaches rely on more complex 
modeling of the impedance within a system. However, 
methods such as four-point impedance [9] and four-electrode 
reflection-coefficient techniques [10], often used in cochlear 
implants, or electrochemical impedance spectroscopy [11], 
[12]  rely on prior knowledge of the geometry or arrangement 
of the electrodes. 

In this manuscript, we propose an approach to measure a 
network of impedances between implanted electrodes which 
all share a common electrical reference. This approach, which 
we term Cross-Channel Impedance Measurement (CCIM) 
relies on a linear series of equations which can be solved 
directly using linear algebra. Validation of the approach using 
simulations yielded accuracy greater than 93% under typical 
conditions. Moreover, a subsequent analysis with random 
networks demonstrated the sensitivity of the approach to 
measurement noise and the range of network impedances to be 
measured, ultimately providing guidelines and limitations for 
the use of CCIM in other applications. 

II. METHODS 

A. General Impedance Measurement 
Consider an implanted system comprising 𝑁𝑁 electrodes, 

each sharing a common electrical reference. A straightforward 
method of measuring the electrical impedance 𝑍𝑍𝑖𝑖 between an 
electrode and the reference is to send a current of known 
amplitude 𝐼𝐼𝑖𝑖𝑖𝑖 between the electrode and the reference, and 
measure the amplitude of the resulting voltage 𝑉𝑉𝑖𝑖. Then, the 
impedance is calculated as per Ohm’s Law: 

 |𝑍𝑍𝑖𝑖| = |𝑉𝑉𝑖𝑖|
|𝐼𝐼𝑖𝑖𝑖𝑖|

 (1) 
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We note that biological tissue is known to elicit both 
resistive and capacitive response to electrical current; thus, for 
the purposes of this manuscript, we consider |𝐼𝐼𝑖𝑖𝑖𝑖| and |𝑉𝑉𝑖𝑖| to 
be the steady-state amplitude of a sinusoidal current input and 
voltage output, respectively, and we therefore consider |𝑍𝑍𝑖𝑖| to 
be the total impedance magnitude combining resistive and 
capacitive responses. 

This method of impedance measurement is simple and 
effective at monitoring general electrical characteristics of the 
implanted system, and can be used to identify common issues 
such as disconnected electrodes. However, this 
implementation does not explicitly consider that electrodes 
may not be completely insulated from one another. For 
example, if an electrical short exists between two electrodes, a 
general impedance measurement would only show that the two 
electrodes have nearly identical impedance, but cannot reveal 
the underlying mechanism. Instead, an impedance 
measurement model must consider the interconnectivity 
between all electrodes in the system. 

B. Cross-Channel Impedance Measurement 
For the purposes of this manuscript, we assume a rather 

pessimistic but nevertheless realistic scenario where no 
electrodes are completely insulated from one another and 
therefore all are electrically connected. Thus, some portion of 
the current entering the system through one electrode passes 
by the tissues measured by each other electrode (hereinafter 
referred to as “nodes”) on its path to the reference. This system 
can be represented visually as a complete graph 𝐾𝐾𝑁𝑁+1, where 
𝑁𝑁 + 1 comprises 𝑁𝑁 electrodes and 1 electrical reference (8-
electrode example in Fig. 1). For this system, the total number 
of current paths, and therefore the total number of impedances, 
is calculated as: 

 𝑁𝑁𝑍𝑍 = 𝑁𝑁(𝑁𝑁+1)
2

 (2) 

These impedances are distinguished between direct 
impedance (the impedance between an electrode and the 
reference) and cross-channel impedance (the impedance 
between two nodes). 

While sending current through electrode 𝑖𝑖, the current 
flowing in and out of node 𝑗𝑗 is described according to 
Kirchoff’s Current Law: 

 �𝐼𝐼𝑗𝑗,𝑖𝑖� =  
�𝑉𝑉𝑗𝑗,𝑖𝑖�

�𝑍𝑍𝑗𝑗,𝑗𝑗�
+ ∑ ��𝑉𝑉𝑗𝑗,𝑖𝑖�−�𝑉𝑉𝑘𝑘,𝑖𝑖��

�𝑍𝑍𝑗𝑗,𝑘𝑘�
𝑁𝑁
𝑘𝑘≠𝑗𝑗  (3) 

where �𝑉𝑉𝑗𝑗,𝑖𝑖� is the voltage measured between electrode 𝑗𝑗 
and the reference during stimulation of electrode 𝑖𝑖, �𝑍𝑍𝑗𝑗,𝑗𝑗� is the 
direct impedance between node 𝑗𝑗 and the reference, �𝑍𝑍𝑗𝑗,𝑘𝑘� is 
the cross-channel impedance between nodes 𝑗𝑗 and 𝑘𝑘, and: 

 �𝐼𝐼𝑗𝑗,𝑖𝑖� =  �𝐼𝐼𝑖𝑖𝑖𝑖, 𝑖𝑖 = 𝑗𝑗
0, 𝑖𝑖 ≠ 𝑗𝑗  (4) 

Equation (3) can be further simplified by replacing 
impedance with admittance: 

 |𝑌𝑌| = 1
|𝑍𝑍|

 (5) 

Applying (5) to (3) yields: 

 �𝐼𝐼𝑗𝑗,𝑖𝑖� =  �𝑉𝑉𝑗𝑗,𝑖𝑖��𝑌𝑌𝑗𝑗,𝑗𝑗� + ∑ ��𝑉𝑉𝑗𝑗,𝑖𝑖� − �𝑉𝑉𝑘𝑘,𝑖𝑖���𝑌𝑌𝑗𝑗,𝑘𝑘�𝑁𝑁
𝑘𝑘≠𝑗𝑗  (6) 

As a symmetric and strongly regular graph, (6) is 
generalizable to any combination of stimulating and recording 
electrodes. Thus, Equations (4) and (6) generates a system of 
𝑁𝑁𝑍𝑍 linear equations which can be arranged as follows: 

 𝑰𝑰 = 𝑼𝑼𝑼𝑼 (7) 

Equation (7) can be solved by populating sparse matrices 𝑰𝑰 
and 𝑼𝑼 according to Algorithm 1, and the resulting admittance 
matrix takes the form: 

 𝒀𝒀 = ��𝑌𝑌1,1�…�𝑌𝑌1,𝑁𝑁��𝑌𝑌2,2�…�𝑌𝑌2,𝑁𝑁��𝑌𝑌3,3�…�𝑌𝑌𝑁𝑁,𝑁𝑁�� 𝑇𝑇 (8) 

 Calculating the reciprocal of each element of 𝒀𝒀 yields all 
impedances within the system. 

C. Model Validation 
Two sets of tests were conducted to validate and 

characterize CCIM performance. First, a simulation of an 8-
electrode system tested the accuracy and precision of CCIM 
for three test cases representing ideal and unideal conditions, 
as well as the general performance of CCIM during random 
conditions. The simulation also allowed for characterization of 
the performance degradation due to increasing measurement 
noise. Second, a physical model of a 4-electrode system was 
built on a breadboard to test the robustness of CCIM to human 
voltage measurement. 

All materials used to validate CCIM are available on the 
Open Science Framework [13]. 

1) Defined 8-Electrode Simulated Measurements 
An 8-electrode system was simulated in Simulink 

(MATLAB 2021b, MathWorks) to characterize the 
performance of CCIM in three examples: an ideal system with 

 
Fig. 1 An example electrode system visually represented as a complete 
graph 𝐾𝐾9, comprising 8 electrodes and 1 shared reference. This system 
can be considered as a set of 36 impedances, defined as 8 direct 
impedances (green, between each electrode and the shared reference) 
and 28 cross-channel impedances (black, between pairs of electrodes). 
During CCIM, current is passed between one electrode and the 
reference, and the resulting voltage is measured between each electrode 
and the reference. 
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low direct impedance and higher cross-channel impedance 
(Fig. 2a), a system with one disconnected electrode (Fig. 2b), 
and a system with a short between electrodes 3 and 7 (Fig. 2c).  

2) Randomized 8-Electrode Simulated Measurements 
A second analysis simulated a range of system impedances 

and levels of measurement noise to determine the 
generalizability of CCIM (Fig. 2d). The minimum and 
maximum impedance within the system ranged from 1 Ω to 1 
MΩ, and the level of measurement noise ranged from 0% to 
5%; for each condition, errors were averaged across 10 
iterations. A linear model estimated the impact of the 
impedance magnitude and type, system impedance range, and 
magnitude of measurement noise on the overall measurement 
error. 

3) 4-Electrode Physical Measurements 
A 4-electrode system was assembled on a prototyping 

board to validate CCIM using voltage measured directly by an 
experimenter. System impedances ranged from 1.5 kΩ to 470 
kΩ, and the voltage between each electrode and the reference 
arising from a 1 mA DC current was measured using an 
oscilloscope. 

III. RESULTS 
The validation of CCIM describes the precision of the 

calculations with respect to different impedance magnitudes 
and measurement error. This can be used to determine the 
viability of CCIM for different research areas, implantable 
electrode systems, and measurement devices. 

A. 8-Electrode Simulated Measurements 
CCIM calculated the impedances within the ideal system 

with median errors of less than 0.1% when estimating direct 
impedances, and 3.5% ± 1.4% (median ± IQR) when 
estimating cross-channel impedances. When measurement 
noise increased to 5%, impedance calculation errors also 

increased to 3.4% ± 0.2% (median ± IQR) for direct 
impedances, and 6.7% ± 0.6% for cross-channel impedances. 

For the purposes of comparison, results for Fig. 2b-c are 
presented assuming 5% measurement noise. When simulating 
a disconnected electrode (Fig. 2b), unaffected impedances 
were calculated with similar precision to the ideal system. 
However, impedance estimates of the disconnected electrode 
were substantially higher: 43.9% error estimating the direct 
impedance, and 9.2% ± 6.7% estimating the cross-channel 
impedances. CCIM performed similarly when estimating 
direct impedances in a system with two shorted electrodes 
(Fig. 2c), although errors were substantially higher for the 
direct impedances of the affected electrodes (51.8% ± 1.8%). 
Cross-channel impedance calculation error was also higher for 
those impedances connected to the affected node (83.6% ± 
43%) than for those that are not (7.5 ± 36.3%). 

The magnitude of impedance calculation errors, as affected 
by the measured impedance, range of system impedances, and 
measurement error, is shown in Fig. 3. Statistical analysis 
using a linear model revealed significant interactions between 
factors, meaning that the impact of each factor cannot easily 
be generalized. However, several trends do appear consistent 
across conditions. 

Generally, higher impedances were estimated with higher 
error using CCIM. More notably, however, is that the 
introduction of voltage measurement noise significantly 
increases the errors in impedance calculations. For example, at 
lower impedances, errors were well below 1% with no voltage 
measurement noise, but increased upwards of 1% with a low 
measurement noise of 1%. 

An interesting behavior occurs when a system comprises a 
larger range of impedances. When impedance values are more 
similar (Fig. 3, dark lines) the average error tends to remain 
consistent regardless of the magnitude of those impedances. 

Algorithm 1 Calculating Admittances 𝒀𝒀 for complete graph 𝐾𝐾𝑁𝑁+1 
Input: Number of electrodes 𝑁𝑁, input current |𝐼𝐼𝑖𝑖𝑖𝑖|, voltage 
measurements �𝑉𝑉𝑗𝑗,𝑖𝑖� where �𝑉𝑉𝑗𝑗,𝑖𝑖� = �𝑉𝑉𝑖𝑖,𝑗𝑗� 
Output: 𝑁𝑁𝑍𝑍 x 1 admittance matrix 𝒀𝒀 
1. 𝑰𝑰 ← 𝑁𝑁𝑍𝑍 x 1 sparse matrix 
2. 𝑼𝑼 ← 𝑁𝑁𝑍𝑍 x 𝑁𝑁𝑍𝑍 sparse matrix 
3. 𝑐𝑐 ← 0 
4. for 𝑖𝑖← stimulation electrodes 1 to 𝑁𝑁 do 
5. for 𝑗𝑗 ← measurement electrodes 𝑖𝑖 to 𝑁𝑁 do 
6. 𝑐𝑐 ← 𝑐𝑐 + 1 
7. if 𝑖𝑖 = 𝑗𝑗 
8. 𝐼𝐼𝑐𝑐,1 ← |𝐼𝐼𝑖𝑖𝑖𝑖| 
9. end if 
10. for 𝑘𝑘 ← electrodes 1 to 𝑁𝑁 do 
11. 𝑎𝑎 ← 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑗𝑗,𝑘𝑘) 
12. 𝑏𝑏 ← 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑗𝑗,𝑘𝑘) 
13. 𝑑𝑑 ← 𝑎𝑎 + (𝑏𝑏 − 1)(𝑁𝑁 − 𝑏𝑏/2) 
14. if 𝑗𝑗 = 𝑘𝑘 then 
15. 𝑈𝑈𝑐𝑐,𝑑𝑑 ← �𝑉𝑉𝑗𝑗,𝑖𝑖� 
16. else then 
17. 𝑈𝑈𝑐𝑐,𝑑𝑑 ← �𝑉𝑉𝑗𝑗,𝑖𝑖� − �𝑉𝑉𝑘𝑘,𝑖𝑖� 
18. end if 
19. end for 
20. end for 
21. end for 
22. 𝒀𝒀 ← 𝑼𝑼\𝑰𝑰 
23. return 𝒀𝒀 

 

 
Fig. 2 With a simulated 8-electrode system, CCIM performance was 
characterized for (a) an ideal system with low direct impedance (dark 
green) and higher cross-channel impedance (grey), (b) a system with 
electrode 6 disconnected as signified by high impedances (light green 
and light grey), (c) a system with a short between electrodes 3 and 7 
(black), and (d) systems with randomly selected impedances. Lighter 
colors indicate high impedance, darker colors indicate low impedance. 
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c)

b)

d)
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However, when impedance values vary from one another by 
up to a factor of a thousand (Fig. 3, light lines), CCIM error 
also vary more widely, with lower errors for small impedances 
and higher errors for larger impedances.  

B. 4-Electrode Physical Measurements 
Calculating impedances using manually acquired voltage 

measurements demonstrated the general reliability of CCIM. 
Average errors for direct impedances were 5.5% ± 6.3%, for 
cross-channel impedances were 6.7% ± 4.3%. 

IV. DISCUSSION 

The purpose of this study is to propose a method of 
estimating a network of impedances within a system of 
implanted electrodes sharing a common reference. Validation 
with the defined systems (Fig. 2a-c) demonstrated impedance 
estimate errors of 3.4% and 6.7% for direct and cross-channel 
impedances, respectively. CCIM is agnostic to the number and 
arrangement of the electrodes, making it potentially applicable 
to a wide range of implantable systems. 

A. Limitations 
As shown in Fig. 3, the precision of the impedance 

calculation is highly dependent on the noise of the voltage 
measurements. At 1% noise, direct impedance measurements 
are made with 1% to 10% error, but increasing the noise to 5% 
subsequently increased errors to between 10% and 40%. This 
suggests that accurate voltage measurements are increasingly 
important for higher-impedance systems. 

Errors tended to increase for impedances connected to a 
shorted or disconnected electrodes; this was mirrored with the 
randomized simulations, where errors tended to increase with 
a wider range of impedance magnitudes within the system. 

B. Future Developments 
One area of possible future improvement is to conduct 

iterative checks on the calculated impedances from CCIM to 
remove functionally irrelevant impedances from the system. 
For example, Fig. 2b depicts a system where one electrode is 
disconnected from the rest of the system. If this is the case, one 
may be able to remove the electrode and all its connections 
from the analysis, simplifying the model. Alternatively, Fig. 
2c depicts a system where two electrodes are shorted. In such 
a situation, one may be able to merge the two electrodes into a 
single node, again simplifying the model. Both approaches, if 
iterated, could be used to improve CCIM performance by 
reducing the number of terms in the system of equations, and 
by merging parallel impedances into a single equivalent 
impedance in cases with a short, thus allowing CCIM to 
identify electrical issues while still characterizing the working 
components of the implanted system. 
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Fig. 3 Validation of CCIM demonstrates the theoretical performance across a range of impedance values with no measurement error, as well as the 

effect of increasing measurement error on this performance. Expected errors when calculating direct impedances are lower than cross-channel impedances, 
and the range of errors widens with a widening range of impedance values within the system. 
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