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ABSTRACT Real-time evaluation of novel prosthetic control schemes is critical for translational research
on artificial limbs. Recently, two computer-based, real-time evaluation tools, the target achievement control
(TAC) test and the Fitts’ law test (FLT), have been proposed to assess real-time controllability. Whereas
TAC tests provides an anthropomorphic visual representation of the limb at the cost of confusing visual
feedback, FLT clarifies the current and target locations by simplified non-anthropomorphic representations.
Here, we investigated these two approaches and quantified differences in common performance metrics that
can result from the chosen method of visual feedback. Ten able-bodied and one amputee subject performed
target achievement tasks corresponding to the FLT and TAC test with equivalent indices of difficulty. Able-
bodied subjects exhibited significantly (p <0.05) better completion rate, path efficiency, and overshoot when
performing the FLT, although no significant difference was seen in throughput performance. The amputee
subject showed significantly better performance in overshoot at the FLT, but showed no significant difference
in completion rate, path efficiency, and throughput. Results from the FLT showed a strong linear relationship
between the movement time and the index of difficulty (R2

= 0.96), whereas TAC test results showed no
apparent linear relationship (R2

= 0.19). These results suggest that in relatively similar conditions, the
confusing location of virtual limb representation used in the TAC test contributed to poorer performance.
Establishing an understanding of the biases of various evaluation protocols is critical to the translation of
research into clinical practice.

INDEX TERMS Electromyography (EMG), fitts’law,myoelectric control, target achievement control (TAC),
user interfaces.

I. INTRODUCTION
AMONG the various efforts to restore functional capacity
to limb amputees, myoelectric pattern recognition (MPR)
has emerged as a clinically viable technique to address
the challenge of intuitive control of a limb prosthe-
sis [1]. Unlike the experience of operating external, man-
made devices, the experience of natural bodily movement
is practiced, developed, and familiarized since infancy.
It is nuanced and intuitive, and thus, any meaningful
replacement is expected to satisfy a premium standard
of quality that we do not expect of non-biomimetic sys-
tems. As such, numerous variations on MPR, from elec-
trode positioning [2] to classification schemes [3]–[6],

have been proposed as improvements toward the goal of
better prosthetic control. However, in this relatively young
field, few generally accepted tools exist to quantify these
improvements.

In many MPR studies, classification accuracy is used as
the primary metric for determining system performance [1].
A large variety of classification techniques have been pro-
posed [4], [7], including the most commonly used super-
vised classifiers of Linear Discriminate Analysis (LDA)
and Multi Layer Perceptron (MLP). Pattern recognition
algorithms are typically assessed offline by measuring the
accuracy of class (movement/posture) estimates that the
classifier makes when presented with new, unseen data.
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FIGURE 1. The experimental setup and graphical user interfaces (GUI) used for visual
feedback in the FLT (left) and TAC test (right).

Although classification accuracy remains an important initial
assessment, a substantial argument has been made disputing
the correlation of offline assessment to online performance
[8]–[11]. Hargrove et al. [12] showed that the inclusion of
transient contractions in training data, which lowered classifi-
cation accuracy, improved subject performance in a real-time
virtual clothespin task.

In an attempt to more faithfully assess real-life perfor-
mance, researchers have adapted existing tests from the
rehabilitation field to evaluate prosthesis control in more
clinically relevant scenarios. The box and blocks (B&B)
test [13], for example, is among the simplest of these tests,
requiring subjects to individually transfer square blocks over
a barrier in a set amount of time. For a more comprehen-
sive assessment, researchers have employed the Southampton
Hand Assessment Protocol (SHAP) [14], a test consisting
of 26 distinct tasks and 6 grips. SHAP, however, is often
seen as too lengthy and tiring for many patients [11], and,
similar to the B&B test, relies on a performance metric of
completion time that fails to characterize the full movement
path. A clinical tool designed specifically for the evaluation of
myoelectrically-controlled prostheses is the Assessment for
Capacity of Myoelectric Control (ACMC) [15], [16], the use
of which has been limited potentially due to its fairly large
subjective component [11]. Furthermore, whereas these clin-
ical tests succeed in incorporating influential environmental
factors such as socket instability and sweating, the additional
complexity and reliance on the presence of certified examin-
ers and materials could make such protocols burdensome for
many research groups.

Recently, several alternatives to the above offline and clin-
ical approaches have emerged in the form of computer-based
virtual assessment tools. One of the simplest of these is
called the Motion Test. The Motion Test was designed by
Kuiken et al. [17] to evaluate the myoelectric control capacity

FIGURE 2. Examples of the visual feedback provided to subjects
performing the TAC test (left) and the FLT (right) for each of the six
movements. Distance (D) = 60◦ and Width (W) = 13◦.

of patients who underwent a targeted muscle reinnervation
(TMR) procedure. The test is initiated by presenting to the
patient a visual prompt requesting that they attempt one of a
set of arm motions that they have previously trained with a
classifier. Once the patient has selected the requested move-
ment, they must maintain that contraction until the classifier
hasmade a predetermined number of correct predictions. This
can also be visually represented by a virtual arm on a screen
traveling through the full range of the movement.

Although a significant step in the direction of a more
realistic testing scenario, the Motion Test, according to
Simon et al. [18], is ‘‘oversimplified’’, and an inadequate
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test for evaluating control schemes which allow misclassifi-
cation or speed modulation. Simon et al. proposed a more
comprehensive test called the Target Achievement Control
(TAC) test. In the TAC test (Fig. 1, right inset), the user
has multidimensional control of a virtual prosthesis and is
prompted to move the virtual prosthesis toward a target pos-
ture, where it must remain for a predetermined dwell time
(i.e. 1 s). While performing the task, the user’s progress
can be impeded by unintended misclassifications and target
overshoots – similar to how a myoelectric prosthesis might
perform in real life. The test can be customized to restrict
the dimensional freedom of the virtual prosthesis and/or alter
the complexity of the task by changing the location and/or
width of the target. Among the performance metrics assessed
by Simon et al. [18] were completion rate, completion time,
and path efficiency.

Upon examination, Scheme and Englehart [19] made the
correct observation that the TAC test resembled a better
known test used in the evaluation of other Human Computer
Interfaces (HCI) called the Fitts’ Law Test (FLT). Originally
demonstrated by Fitts in 1954 [20], the Fitts’ Law Test has
become an international standard (ISO9341-9) for the vali-
dation of practically any type of human-computer interface
(HCI) including mice, joysticks, touchpads, and even eye-
trackers [21]. However, only recently has EMGbeen shown to
be a suitable control source for Fitts’ Law testing [22]–[24].
At its core, Fitts’ Law asserts that there exists a trade-off
between speed and accuracy in target acquisition tasks that
is defined by

MT = a+ b ∗ ID (1)

where MT is the time (in seconds) required to acquire the
target, a and b are regression coefficients, and ID is the
target’s index of difficulty (in bits), which is defined as

ID = log2

(
D
W
+ 1

)
(2)

whereD andW are the target distance andwidth, respectively.
Fitts proposed a metric called throughput (TP) that could
quantitatively describe the performance of a given control
system:

TP =
(
ID
MT

)
(3)

Thus, Scheme et al. devised a pseudo 3-DFitts’ Law style task
that accepts myoelectric input to perform target acquisition
tasks on a screen (Fig. 1, left inset). The protocol is similar
to that of the TAC test, but instead of a virtual arm, tasks are
performed using a circular cursor capable of three-degrees
of freedom. This simplification was seen as a benefit to
Scheme at al., citing the ‘‘limitations in performance, visual-
ization, and immersion’’ of virtual environments that attempt
to more realistically represent the movement of a prosthetic
device.

The FLT and the TAC test aim to satisfy an important need
in the development of novel prosthetic control techniques.

However, no existing studies have attempted to compare these
evaluation tools directly. In this study, the FLT and TAC test
were performed under equivalent conditions in order to inves-
tigate and quantify the difference in their outcome metrics.
The data collected in this work, as well as the implementation
of both real-time tests, had beenmade freely available as open
source as part of BioPatRec (release FEM – to be released
with the publication of this article) [7].

II. METHODS
A. SUBJECTS
Ten able-bodied subjects and one amputee participated in this
study. Of the 10 able-bodied subjects, 5 were female, 2 were
left-handed, and 7 had no experience using a myoelectric
pattern recognition system. All subjects ranged in age from
20 to 44. The amputee subject had a left transradial ampu-
tation, and regularly uses a myoelectric prosthesis. All the
experiments were approved by the Swedish Regional Ethics
Committee in Gothenburg (626-10, T688-12).

B. RECORDING PROCEDURE
Surface EMG signals throughout the experiment were
acquired using a custom acquisition device based on the
RHA2216 analog-front-end (Intan Technologies, USA) [25]
The signal was sampled at 2 kHz frequency and subsequently
filtered using a 4th order Butterworth filter with a 20-800 Hz
passband. Four Ag-AgCl bipolar electrode pairs were evenly
distributed around the most proximal third of the subject’s
dominant forearm, and one reference electrode was placed
at the elbow. Signals were preliminarily inspected and elec-
trode positions were adjusted slightly if necessary to achieve
acceptable signal quality.

Recording sessions involved 7 movements: hand open/
close, wrist flexion/extension, pro/supination, and rest (no
movement). Subjects were asked to execute and maintain
each movement at ∼70% full strength for 3 seconds and rest
for 3 seconds, iterated 3 times.

C. SIGNAL PROCESSING AND PATTERN RECOGNITION
All procedures for signal processing and pattern recognition
were enabled by the open source platform BioPatRec [7].
Fifteen percent of the signal from each contraction time was
discarded from the beginning and the end in order to remove
idle periods while partially preserving transient portions of
the contraction signal. The resulting EMG data was evaluated
using overlapping time windows of 200ms in 50ms incre-
ments. From each time window, the four most commonly
used time-domain features were extracted [5]: mean absolute
value, zero crossings, slope sign changes, and waveform
length.

The linear discriminant analysis (LDA) pattern recognition
algorithm in the one-vs-one (OVO) topology was used to
classify the feature values, a method that has been shown
previously to be an effective strategy for the real-time control
of individual movements [19], [26], [27].
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D. REAL-TIME TESTS
The TAC test, which was originally proposed by
Simon et al. [18], was previously incorporated into BioPa-
tRec [27], an open source, MATLAB-based (The Math-
Works, Inc., Natick, MA), research platform for advanced
myoelectric control [7]. In this study, the TAC test implemen-
tation in BioPatRec was adapted to allow for the random pre-
sentation of targets of different distances (◦) and allowances
(◦, equivalent to one half the target width) in the same trial
(Fig. 1 right inset).

The Fitts’ Law Test utilized in this study was modeled after
the pseudo-3D task presented by Scheme & Englehart [19]
and implemented from scratch in BioPatRec (Fig. 1 left inset).
Instead of a virtual limb like in the TAC test, the users
controlled a circular cursor in three dimensions aiming to
match the location and radius of the target.

In this study, hand flexion and extension were mapped to
the leftward and rightward movements of the cursor (right-
ward and leftward for left-handed subjects), supination and
pronation were mapped to the upward and downward move-
ment of the cursor, and open hand and close hand were
mapped to the increase and decrease of the cursor radius
(Fig. 2).

Similar to the TAC test, subjects were asked to move the
cursor, which originated at the center of the screen with a
medium radius, to the location and/or size of the target cursor,
and remain within the width of the target for the predeter-
mined dwell time. All attempts were made to make sure
that the fundamental parameters of the FLT task including
target distance, target width, speed, and dwell time, were
represented identically to the parameters of the TAC test. The
implementations of the TAC test and FLT were designed to
use the same distance units, such that if, for example, a target
in the TAC test requires 100 consecutive ‘‘wrist flexion’’
classifications for completion, that same target in the FLT also
requires 100 consecutive ‘‘wrist flexion’’ classifications for
completion. In this way, the only difference between the two
tests was the visual representation of user movement on the
screen.

E. EXPERIMENTAL PROTOCOL
Subjects were asked to perform trials of both FLT and TAC
test. In order to reduce bias due to the learning effect, half of
the subjects were randomly selected to begin with the FLT
and half to begin with the TAC test. Furthermore, subjects
were given a training trial before the first trial of each test
in order to familiarize themselves with the task, and subjects
alternated between trials of the FLT and the TAC test in order
to control for fatigue. In this study, each trial consisted of a
set of 24 target acquisition tasks.

In both the TAC test and the FLT, the hand/cursor was free
to move in all 3 degrees of freedom (DoF), but targets were
limited to one DoF at varying IDs. Therefore, each target only
required one type of movement to be reached. If an over-
shoot occurred, or if an unintended movement was produced,

TABLE 1. Sets of distances (D) and widths (W) and resulting indices of
difficulty (ID).

other types of movements were necessary to correct for the
error.

It was suggested in [19] that Fitts’ Law is best examined
utilizing a variety of ID values under 4 bits. Accordingly,
four sets of distances (D) and widths (W), which are shown
in Table 1, were used during this study.

For both tests, the velocity ramp [5] postprocessing strat-
egy was used with a ramp length of 10 and a down count
of 2. The maximum allowed displacement was 2 degrees per
prediction, which, when paired with the 50 ms time incre-
ment, results in a maximum speed of 40 degrees per second.
Subjects were expected to complete each target acquisition
task in less than the 15-second time out time or be marked
incomplete. Dwell time was set to 1 second.

Subjects performed 3 trials of each test (excluding one
training trial for each test). Each trial consisted of 24 ran-
domly presented target acquisition tasks, representing all
distinct combinations of the 6 target directions (open/close
hand, hand flexion/extension, pro/supination) and 4 indices of
difficulty (ID) (Table 1). Each subject, therefore, performed
72 target acquisition tasks per test.

F. PERFORMANCE METRICS
In addition to throughput, performance metrics of comple-
tion rate, efficiency, and overshoot, were calculated [19].
Throughput was defined in Equation 3, with possible IDs
shown in Table 1. Movement time was defined as the time
between the beginning of a task and the initial acquisition of
the target (i.e. completion time – dwell time) or the time out
time, in the case of incomplete tasks. Completion rate was
defined as the percentage of tasks completed by the subject
within the 15-second time out time. Path efficiency (%) was
determined for each task and represents the ratio of the short-
est distance to the target to the actual distance travelled. The
overshoot metric refers to the number of times per task that
a target was acquired but then lost before the dwell time was
reached.

Alternative methods for calculating ID and MT have been
proposed previously [17], [28]) and were implemented here
in order to determine whether such variations on calculation
procedure had a significant effect. Soukoreff & Mackenzie
recommended using an effective target width (We) when con-
structing Fitts’ Law models [28], which can be approximated
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FIGURE 3. Resulting performance metrics for FLT and TAC when tested under the same conditions in able-bodied subjects.
Compared to FLT, TAC had a significantly lower completion rate (%) and efficiency (%), and a significantly higher occurrence of
overshoots (per task). Results for throughput (bits/s) were not significantly different. Errorbars indicate standard deviations
and ∗ indicates a significant difference (p < 0.05).

FIGURE 4. Cumulative completion rate curves for FLT (solid line) and TAC
(dashed line) tests in able-bodied subjects. Shaded regions represent ±1
standard error.

using the error rate (Err) of each condition:

We =

{
W × 2.066

z(1−Err/2) ifErr > 0.0049%

W × 0.5089 otherwise.
(4)

where z(x) is the inverse of the normal cumulative distribution
function, and

IDe = log2

(
D
We
+1
)

(5)

where IDe is the effective index of difficulty. This method is
meant to incorporate the accuracy variations that may exist
between different subjects and conditions [28].

Furthermore, another alternative for calculation of ID and
MT was explored wherein the median values for this data
were used instead of the mean, as Kuikenet al. did when
evaluating the results of their Motion Test [17].

FIGURE 5. The relationship between movement time (s) and index of
difficulty (bits) for both the Fitts’ Law Test (left) and the Target
Achievement Control test (right) for ID = 1.73, 2.25, 2.49, and 3.09 bits.
Blue circular points and error bars indicate the mean and standard
deviation, respectively, of results from 10 able-bodied subjects. The solid
yellow line is a regression of the ablebodied results. The red x’s show the
results from the amputee tested.

G. STATISTICAL ANALYSIS
Analysis of all collected data was conducted usingMATLAB.
A paired t-test was used to assess the statistical difference in
the aforementioned performance measures between the two
tests. The overall significance of linear regressionmodels was
determined using an F-test. A two-sample t-test was used
to assess differences in performance between novices who
began with the FLT and novices who began with the TAC
test.

III. RESULTS
Fig. 3 summarizes the performance (mean ± standard devia-
tion) of the 10 able-bodied subjects. The average completion
rate (%) for trials of the FLT (83.19 ± 5.54) was signifi-
cantly (p < 0.001) higher than that of the TAC test trials
(60.69 ± 9.7). Throughput values of the FLT trials (0.52 ±
0.06) were slightly higher than the throughput of the TAC
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FIGURE 6. Different ways of plotting Index of Difficulty (ID) vs Movement Time (MT) for FLT (left) and TAC (right). The tested ID values
(IDt) are shown in Table 1. Effective ID values (IDe) were estimated using Equation (5). Average MT’s and ID’s show up differently
depending on whether the mean or median was used to calculate them. Linearity was assessed using the coefficient of determination, R2

(FLT: R2
IDt/Mean = 0.960, R2

IDe/Mean = 0.815, R2
IDe/Median = 0.989, R2

IDt/Median = 0.992; TAC: R2
IDt/Mean = 0.187, R2

IDe/Mean = 0.011,

R2
IDe/Median = 0.006, R2

IDt/Median = 0.109).

trials (0.46± 0.07), however this was not statistically signifi-
cant (p = 0.13). The path efficiency (%) was significantly
(p = 0.02) higher for the FLT trials (67.87 ± 5.87) than
for the TAC test trials (59.47 ± 11.17). Results for over-
shoot indicate a more than double occurrence of overshoot
in trials of the TAC test (1.32 ± 0.31) versus trials of FLT
(0.55 ± 0.22, p < 0.001).

Fig. 4 displays the cumulative completion rate curves for
the FLT and TAC tests in able-bodied subjects. By the timeout
time of 15 seconds, 83.19 ± 5.54% of FLT tasks were com-
pleted and 60.69 ± 9.7% of TAC tasks were completed. The
curves appear to ‘‘flatten out’’ well before the timeout time,
suggesting that 15 seconds was a sufficient amount of time to
assess completion rates.

Fig. 5 displays the relationship between movement time
(MT) and index of difficulty (ID) for both the FLT and TAC
test. Although both tests suggest a linear relationship between
MT and ID, only that of the Fitts’ Law Test can be said
to be a strong relationship (R2

= 0.96) that is statistically
significant (p = 0.02). Results of the TAC test do not display
a significant linear relationship between MT and ID (R2

=

0.19, p = 0.56), indicating that Fitts’ Law may not be an
appropriate model for this type of test.

In Fig. 6, ID and MT are plotted using combinations of
the alternative calculation methods described by Soukoreff
and Mackenzie [28] and Kuiken et al. [17]. Despite the
alternative calculations, the coefficients of determination, R2,
remained high for the FLT (R2

FLT > 0.8) and low for the
TAC test (R2

TAC < 0.2), indicating that the results of Fig. 5
are not significantly affected by the use of these alternative
calculation methods.

Fig. 7 and 8 display the path traces for all tests performed
by a representative subject where D = 60 and W = 8 or 13.
A straight line between the origin and a shaded target box
would indicate a 100% efficiently performed task, whereas
deviations from that line indicate errors. Lines that pass into

and out of a target box indicate the occurrence of an over-
shoot.

During testing it was observed that novice users (i.e. sub-
jects with no experience using MPR) who began the exper-
iment learning the Fitts’ Law Test (S4, S7, S9; trial pattern:
1. TAC 2. FLT 3. TAC 4. FLT 5. TAC 6. FLT) had an easier
time learning the necessary contraction patterns, and thus
they exhibited better performance in both the FLT and TAC
test when compared with subjects who began the experiment
learning the TAC test (S1, S3, S5, S8; trial pattern: 1. FLT 2.
TAC 3. FLT 4. TAC 5. FLT 6. TAC). The results displayed
in Fig. 9 suggest that the novices who began with the TAC
test indeed had significantly lower completion rates when
performing the TAC test than those who began with the FLT
(pTAC = 0.044). However, the test with which a subject began
appeared to have no significant effect on the completion rate
when performing the TAC test (pFLT = 0.725).

A. AMPUTEE RESULTS
Table 2 presents the performance metrics produced from the
transradial amputee subject’s trials. Unlike the able-bodied
participants, the amputee exhibited no difference in perfor-
mance between the FLT and TAC test in the metrics of
completion rate (p = 0.78), throughput (p = 0.96), and path
efficiency (p = 0.67). Similar to the able-bodied subjects, the
amputee made far more overshoots while doing the TAC test
(p < 0.001).
The amputee subject, who was an experienced MPR user,

performed better thanmost of the able-bodied subjects, and in
5 out of the 8 mean values shown in Table 2, the amputee per-
formed significantly better than the other subjects (p < 0.05).
Most notably, the subject performed significantly better in 3
out of 4 of the TAC metrics. However, when compared with
the three other experienced MPR users (S2, S6, S10), only 2
out of the 8mean values (FLT throughput and FLT efficiency)
were significantly different.
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FIGURE 7. Path traces from a representative subject using the Fitts’ Law
Test. Traces from tasks where D = 60◦ and W = [8◦, 13◦] are shown.
Shaded boxes represent targets of width 13◦. All axes units are in degrees
(◦) from the initial position.

FIGURE 8. Path traces from a representative subject using the TAC test.
Traces from tasks where D = 60◦ and W = [8◦, 13◦] are shown. Shaded
boxes represent targets of width 13◦. All axes units are in degrees (◦)
from the initial position.

IV. DISCUSSION
In prosthetics, computer-based target acquisition tests have
proven to be convenient stand-ins for the more cumbersome
real-life tests used in clinical settings. They also offer much
more information on an algorithm’s translational potential
than offline measures such as classification accuracy.

Here we have examined two target acquisition tasks with
computer-based implementations: the TAC test, which uses a
virtual limb to simulate control of a prosthesis, and the FLT,
a pseudo-3D Fitts’ law style task where a circular cursor is
manipulated on the screen. Despite having been tested under
equivalent conditions, such as speed, target type, and dwell
time, the resulting performance metrics of completion rate,
path efficiency, and overshoot showed statistically significant
differences (Fig. 3, Table 2).

FIGURE 9. Average completion rates across all trials for novice subjects
who began the experiment with FLT (S4, S7, S9) and novice subjects who
began the experiment with TAC (S1,S3,S5,S8). Errorbars indicate standard
deviations and ∗ indicates a significant difference (p < 0.05).

TABLE 2. Results of FLT and TAC tests in amputee subject.

The most obvious difference found was the overshoot met-
ric, where there were over twice as many overshoots in the
TAC trials than in the FLT trials. This behavior can explain
why the completion rate and path efficiency metrics were
lower for the TAC test as well. Increased overshoots would
require the subject to take a greater amount of time and
move a greater total distance in order to complete the task.
These results reflect the observations that participants voiced,
saying that the target was difficult to locate in the TAC test,
and once they found themselves close to the target, where the
virtual target and controlled arms were overlapping, it was
difficult to determine which movement was required to reach
the target. This is shown visually by the path traces of the
representative subject shown in Figs. 7 and 8, where the path
traces of the TAC trials appear to diverge noticeably more
from the ideal path to the target than do the traces of the FLT
trials. Indeed, this confusionwas amotivation for Scheme and
Englehart [19] for devising a simplified abstraction of the task
using a circular cursor.

The results for the FLT in Fig. 5 confirmed Scheme et al.’s
assertion that their myoelectrically controlled pseudo-3D
Fitts’ law style task indeed follows the Fitts’ Law model.
However, similar analysis of the TAC test (Fig. 5, right inset)
suggests that Fitts’ Law testing may not be suitable for all
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forms of myoelectric control evaluation. This conclusion was
supported by the indifference of the results to alternative
calculation techniques for MT and ID (Fig. 6).

A notable difference between the visualizations offered by
the FLT and TAC test is the visual representation of target
width. Because of the reliance on using an arm-shaped target,
the TAC test is unable to provide a clear representation of
target width, whereas in the FLT target width is simply shown
by the width of the target cursor. Although the target widths
were in effect identical, the lack of visual feedback in the TAC
test may have been what prompted the subjects to overshoot
more frequently. This difference may also help to explain the
TAC results of Fig. 5, where movement time appears to be
dependent entirely on target width (i.e. MTs of targets with
equal Ds but different Ws were significantly different,
p < 0.05, but MTs of targets with different Ds but equal
Ws were not statistically different, p > 0.05). The increase
in difficulty associated with a smaller target (smaller W) is
an assumption of the Fitts’ Law model whose effect may
be amplified if the change of target width is not properly
represented in the visual feedback, as is the case in the TAC
test. Moreover, this ability to show different widths represents
an advantage to the FLT, but the usefulness of this feature can
be debated, given that most ‘‘targets’’ in the real world are
not colorful circles of various widths, but instead, physical
objects that can require indistinct levels of precision.

This study emphasizes the importance of utilizing sev-
eral performance metrics in myoelectric controls research.
Although no significant difference was shown between the
FLT and the TAC test in throughput, the two tests differed sig-
nificantly when comparing completion rate, path efficiency,
and overshoot. Therefore, multiple metrics should be used
when describing control. Furthermore, as shown by the dif-
ferences between the FLT and TAC test, each of these metrics
may be biased depending on the nature of the test itself.

During the early trials of a testing session, it was observed
that users new to myoelectric control (‘‘novices’’) had more
difficulty learning to move the TAC arm than the FLT cursor,
which was surprising given that the TAC test appears to dis-
play amore realistic, intuitive visualization of armmovement.
However, during TAC trials, subjects would often attempt to
simply match the posture of the requested movement rather
than perform the correct series of contractions to ‘‘move’’
the arm into the correct position. For example, in a task that
had a target at 30◦ flexion, a subject would be tempted to
simply position their hand at 30◦ flexion, rather than fully
flex their wrist and maintain the contraction until completion.
Conversely, it appeared to be easier to teach the subject
to perform the correct contractions when the 6 movements
were matched to the 6 directions used to control the FLT
cursor. Indeed, the results of Fig. 9 indicate that subjects
who began the experiment by learning how to perform the
FLT, performed significantly better on the TAC trials than
those who began the experiment by learning the TAC test.
This may be expected, since training initially with the FLT
meant that a subject had more overall training experience

before beginning the first TAC test. However, if this were
the case, it would also be expected that subjects who began
with the TAC test would perform better on the FLT trials than
those who began with the FLT, yet no significant difference
in completion rate of the FLT trials was observed between
novices who began with the FLT and novices who began with
the TAC test. This result suggests not only that the FLT is
easier to learn for novices but also that experience learning
the FLT may increase performance in more confusing target
acquisition visualizations like what was used in the TAC test.

The fact that the FLT represents movement using a cur-
sor, and the TAC test uses a virtual representation of the
arm, suggests that the FLT can be more easily equated to a
‘‘game’’; one subject even remarked that the FLT was more
‘‘fun because it looks like a game’’. Indeed, much study has
been devoted to determining the ability of myoelectrically
controlled games to translate skills to real-world prosthesis
use. Van Dilk et al. showed that previous training using an
EMG-controlled game had no effect on performance in a
prosthesis-simulator task [29]. Augmented reality training,
on the other hand, has been shown to improve myoelectric
prosthesis training [30]. Although both the TAC test and the
FLT can be used as an indication of real-time controllability,
further work needs to be done to understand to what degree
each test can describe performance in the clinical setting.

Many limb movements fall out of the realm of target
acquisition. Using tools like pencils or spoons or performing
gestures like waving or even dancing is dynamic; success is
determined not by start and end point, but by the entire path
itself (Fig. 7 and 8). The FLT and TAC rank performance of
control based on average times and distances. Differences in
standard deviation are often not considered, and there is no
difference between ten 1◦ errors and one 10◦ errors. More-
over, smoothness ofmovement and the control of acceleration
and deceleration of a prosthesis, which can be important in
sensitive situations such as carrying a plate of food or a
boiling pot of water, have not been accounted for yet in these
tests.

Finally, although it was found that results of the amputee
tested in this study did not vary significantly from those of
the other subjects, more amputee subjects must be included
in future trials to conclusively state that evaluation of able-
bodied subjects using FLT and TAC is translatable to the
amputee population.

V. CONCLUSION
A direct comparison was performed between two common
computer-based assessment tools for the evaluation of myo-
electric control. Ten able-bodied subjects and one amputee
were tested using a pseudo-3D Fitts’ Law Test (FLT) and
the Target Achievement Control (TAC) test under identical
conditions. Subjects performed significantly worse in the
TAC test with regard to completion rate (p < 0.001), path
efficiency (p = 0.02), and overshoot (p < 0.001), but
showed no significant difference in throughput (p = 0.13).
Regression plots showed that the FLT adhered closely to the
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Fitts’ Law model, whereas the TAC test did not. The lack of
target width visualization in the TAC test was identified as a
contributor to its poorer performance.

Despite their inherent similarities, the TAC test and the FLT
cannot be considered interchangeable. Our testing showed
that the VR environment used in the TAC test is responsible
for a significant increase in user error and reported confusion,
suggesting that the FLT may be a more reliable assessment
tool, especially when testing using multiple target widths.
However, further investigation is required to determine which
test has greater potential for translation to the clinical
environment.
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