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Abstract—Pattern recognition-based decoding of surface elec-
tromyography allows for intuitive and flexible control of pros-
theses but comes at the cost of sensitivity to in-band noise and
sensor faults. System robustness can be improved with wavelet-
based signal processing and data imputing, but no attempt has
been made to implement such algorithms on real-time, portable
systems. The aim of this work was to investigate the feasibil-
ity of low-latency, wavelet-based processing and data imputing
on an embedded device capable of controlling upper-arm pros-
theses. Nine able-bodied subjects performed Motion Tests while
inducing transient disturbances. Additional investigation was
performed on pre-recorded Motion Tests from 15 able-bodied
subjects with simulated disturbances. Results from real-time tests
were inconclusive, likely due to the low number of disturbance
episodes, but simulated tests showed significant improvements
in most metrics for both algorithms. However, both algorithms
also showed reduced responsiveness during disturbance episodes.
These results suggest wavelet-based processing and data imputing
can be implemented in portable, real-time systems to potentially
improve robustness to signal distortion in prosthetic devices with
the caveat of reduced responsiveness for the typically short dura-
tion of signal disturbances. The trade-off between large-scale
signal corruption robustness and system responsiveness warrants
further studies in daily life activities.

Index Terms—Wavelet transforms, electromyography, signal
denoising, prosthetics, data imputing.

I. INTRODUCTION

ELECTROMYOGRAPHY (EMG) signals from vestigial
muscles are the most common control source for powered

prostheses due to their direct correlation to motor intention
and ease of non-invasive detection [1]. There is a significant
discrepancy between the current mechatronic prosthetic tech-
nology and the fidelity of the signal acquisition and control
systems. This results in limited controllability and frequent
frustration from users [2], [3]. A study performed in 2007
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showed 39 % of upper-limb amputees with direct control myo-
electric prostheses did not use them regularly due to issues
stemming primarily from low controllability and functional-
ity [4], though the relationship between lost limb functionality
and user requirements is complex and changes over time [5].
The addition of proportional speed control and the adoption of
functional hand grips by many manufacturers has not reduced
artificial limb rejection rates [4], [6], [7]. This suggests a
more intuitive and functional control mechanism is required
to address patient needs.

Direct control systems commonly used in commercial pros-
theses work by either cycling through grips with pre-specified
muscle contractions (e.g., co-contraction of both the wrist
flexor and extensor muscles) or by selecting states directly
through sequences of contractions (e.g., co-contraction twice
in quick succession). While users can learn these cycles and
sequences, such systems limit the number of grips that are
practical to use in daily life and can be slow and cumber-
some to use. Using myoelectric pattern recognition (MPR)
to predict motor intention from multi-channel surface EMG
(sEMG) can allow more functionality and more natural use of
upper-limb prostheses. With an MPR-based system, the user
can change the grip of a prosthesis directly by performing a
physiologically equivalent contraction as if they had an intact
limb. However, the increase in functionality provided by MPR
systems is offset by a large reduction in robustness. This is an
important consideration, as an incorrect movement of the pros-
thetic at any point can compromise an entire task, hindering
the clinical translation of the technology [8]. Environmental
noise, signal artifacts caused by electrode movement, and
missing and corrupted signals due to loose electrode-skin con-
tact have the greatest negative impact on MPR systems using
sEMG [9]–[11]. Methods that reduce their impact can have
a significant positive effect on the controllability, robustness,
and eventual adoption of powered prostheses. Electrode-skin
decoupling and movement artifacts are typically short-term
transient sources of noise. Therefore, even methods that reduce
the responsiveness of the prosthesis during these events are
useful if they can prevent unintended movement at critical
times, i.e., avoiding the slippage of a brittle object while
relocating it [12].

The aforementioned noise sources have wide-band and non-
stationary characteristics. This makes them difficult to remove
with FIR or IIR filters without also removing useful signal
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Fig. 1. Examples of clean sEMG signal (top-left) and a superimposed motion
artifact (top-right) filtered with a conventional Butterworth filter (bottom-left)
and artifact reduction (bottom-right). The original signal is underlayed on
each window in gray. Artifact reduction decreases the effect of the corruption
(presented as Mean Squared Error) much more than conventional filtering,
and the signal distortion it imposes only occurs during the artifact, where the
filter distorts the entire signal.

components, the effects of which are demonstrated in Fig. 1.
Using more electrodes can offset some of their effects in cases
of transient noise or electrode lead-off events, where the issue
may only affect one channel, but this also increases the system
complexity and is only useful if there are enough available
myoelectric sites for recording.

Wavelet-based signal analysis has been gaining signifi-
cant popularity in treating complex, noisy biological signals.
Several works have been published on using subsets of wavelet
transform coefficients directly in sEMG pattern recognition
systems that demonstrate an increase in classification accu-
racy [10], [13]. Other works have focused on using the wavelet
transform to dynamically reduce noise across the time and
frequency domains based on a priori knowledge about the
signal and noise sources, referred to as denoising [14]–[18].
The latter approach produces a cleaned version of the orig-
inal signal, providing a more direct correlation between the
result and motor intention, and allowing for straightforward
integration in existing systems. To the authors’ knowledge, no
investigation has been made into determining the feasibility of
implementing a real-time signal denoising routine on a micro-
controller operating independently of a PC. Demonstrating the
feasibility of executing such algorithms in real-time and in an
embedded system is the next logical step towards more robust
pattern recognition-based control in limb prostheses.

None of these algorithms address the situation where elec-
trodes lose their electrical coupling with the body, another
potential complication on myoelectric prostheses. Little is
known on the frequency of occurrence of such situations in
daily use, but their effects are significant enough for lead-
off event (LOE) detection circuitry to be included in many
bio-potential amplifiers. Dry electrodes commonly used in
prosthetic sockets are particularly susceptible to LOEs, as there
is no adhesive to attach the electrodes to the skin, resulting
in a complete loss of EMG often coupled with strong tran-
sients as electrodes disconnect and reconnect with the skin.
LOE incidence can be reduced by making the socket fitting
tighter around the stump, but this comes at the cost of comfort
making it an often unacceptable compromise.

Existing classifiers that adapt to changes in signal charac-
teristics typically react slowly and thus have limited useful-
ness in handling LOEs [19]. While redundancy from extra
electrodes may sufficiently compensate for LOEs in some
circumstances [20], Zhang and Huang demonstrated that a
Linear Discriminant Analysis-based classifier tolerant to elec-
trode faults resulted in significantly increased classification
accuracy [21]. Their results suggest that the signal corrup-
tion and loss of information during LOEs is a valid cause
for concern even with only one out of six electrodes compro-
mised. Their implementation used a fast retraining algorithm
for the classifier that compensated for missing channels. While
promising, it does not provide a generic solution applicable
across different machine learning algorithms.

Pelckmans et al. [22] suggested using a probabilistic model
of missing data for support vector machines that approaches
mean data imputing in the case of a linear system [20]. While
the research has not been applied to sEMG signals specif-
ically, it offers a generic solution that is computationally
efficient. Since this operates directly on the signal during pre-
processing, it can be implemented in a modular fashion on an
existing embedded system without significant modifications.

In the present study, we investigated signal denoising and
data imputing to enhance the robustness of pattern recogni-
tion against noise and sensor faults during continuous sEMG
classification. We evaluated classification accuracy on three
common classifiers and on signal distortion with respect to
denoising algorithms and demonstrated the feasibility of exe-
cuting these algorithms in real-time in an embedded system for
the first time. In addition, we implemented said algorithms on
a low cost, low power microcontroller capable of fitting into
existing prostheses, allowing for further clinical translation.

II. METHODS

This study was approved by the Västra Götalandsregionen
ethical committee (Dnr: 769-12), and written informed consent
was obtained from all participants.

A. Wavelet-Based Signal Denoising

The characteristics of sEMG signals depend on many fac-
tors, but the dominant frequency band viable for wavelet
analysis is in the 125-250 Hz range [10], with compo-
nents in the 250-500 Hz range containing the largest relative
contribution of system noise [23]. For this application, the
system noise was treated as a locally-stationary additive
function based on the standard deviation of the first-level
(250-500 Hz) wavelet detail coefficients. Algorithms to reduce
system noise from wavelet coefficients were selected based on
reviews in previous literature with an emphasis on computa-
tional simplicity [15], [24]–[28]. Hard, soft, semi-hyperbolic
(hyper), adaptive, and non-negative (non-neg) shrinkage meth-
ods were investigated in this experiment, defined in Table I.
The Daubechies four tap wavelet was chosen as the mother
wavelet due to its ability to effectively describe both time and
frequency signal components and its low filter order [16]. The
noise threshold parameter, λ, for each routine was calculated
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TABLE I
WAVELET SHRINKAGE RULES EVALUATED IN THIS EXPERIMENT

using the minimax threshold defined in (1):

λ = σ̂ ·
(

0.3936 + 0.1829 · log(N)

log(2)

)
(1)

where σ̂ is the standard deviation of the system noise wavelet
coefficients and N is the window length in samples. This
is designed to minimize the maximum mean squared error
against an ideal procedure [29].

B. Wiener Correction Factor

The wavelet transform concentrates the signal energy into
a relatively small number of high-valued coefficients [30].
Wavelet-based denoising then reduces the sufficiently small
coefficients (assumed to be noise) towards zero, reducing the
signal subspace (the number of non-zero coefficients used to
describe the signal). This property, combined with the fact
that the wavelet transform provides rich spectral characteris-
tics on both the desired signal and the noise lends the process
to Wiener filtering, expressed as γ̃j,i in (2).

γ̃j,i = γj,i · γ̂ 2
j,i

γ̂ 2
j,i + s(γ̂1)2

, (2)

where s(·) denotes the corrected sample standard deviation.
This treats the desired signal and the noise as locally stationary
systems, which is appropriate for sufficiently small windows
on isometric contractions [31], and provides a smoother system
response than wavelet shrinkage alone. The Wiener filtering
coefficients can be calculated on a different transform level
and mother wavelet selection than the original data, Fig. 2,
but this flexibility was foregone in the current implementation
to minimize processing time.

C. Wavelet-Based Artifact Reduction

Motion artifacts are characterized by strong, transient sig-
nal interference at low frequencies, but they have wide-band
characteristics that extend into the dominant sEMG signal
range [9]. A third- or fourth-order stationary wavelet trans-
form cleanly separates the artifacts into the approximation
coefficients, corresponding to the 0-62.5 Hz and 0-31.25 Hz

Fig. 2. Block diagram for generic wavelet-based Wiener filtering. The trans-
forms for the Wiener coefficient estimation and for the signal filtering are
separate, allowing for use of different wavelet parameters in wavelet shrinkage
and Wiener filtering.

ranges, respectively, while maintaining a one-to-one correla-
tion of time indexes on all levels of the transform with the
original signal. In this implementation, it was assumed that any
sufficiently strong signal in the approximation coefficients of
the transform was caused by a transient artifact. Hard thresh-
olding was applied to each signal band (3-5) to remove the
corrupted portions of the signal to produce the cleaned approx-
imation and detail coefficients γ̂A,i and γ̂D,i, respectively:

θk = μi(|γdom|) + k ∗ si(γdom) (3)

γ̂A,i =
{

γA,i, if |γA,i| < θ1
0, otherwise

(4)

γ̂D,i =
{

γD,i, if |γA,i| < θ1 ∪ |γD,i| < θ0
0, otherwise

(5)

where i is the time index, γA,i is the i-th wavelet approxima-
tion coefficient, γD,i is the corresponding detail coefficient at
decomposition level D, μi(·) is the mean value operator over
time, and γdom is the wavelet decomposition level correspond-
ing to the dominant sEMG signal frequency band. The effect
of this proposed algorithm is illustrated in Fig. 1.

D. Wavelet Processing Implementation

At the time of the experiment, the authors were unaware of
any microcontroller compatible implementation of the station-
ary wavelet transform (SWT) algorithm and its inverse. The
appropriate routines were written in C, leveraging the Cortex
Microcontroller Software Interface Standard for optimization
of filtering operations [32]. The denoising and artifact reduc-
tion routines were performed immediately prior to feature
extraction on each sample window. Signals were reconstructed
by recursively averaging all possible shifted, decimated inverse
discrete wavelet transforms on each wavelet level, referred to
as the average basis inverse [33].

Due to the nature of the wavelet transform, the operations
work most efficiently on time windows with samples lengths
that are a power of 2. For this work, a time window of 128 ms
with 64 ms overlap sampled at 1 kHz was selected, which falls
within the typical windowing range for sEMG applications and
still allows for some processing time before the control algo-
rithm begins to feel unresponsive [1], [34]. Time performance
metrics were collected for each of the proposed denoising
algorithms on this window length and are shown in Fig. 3.
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Fig. 3. Mean processing time required for each algorithm on one channel
with 128 sample length windows. The label ‘SWT Only’ only includes the
SWT and its inverse transform, ‘Motion’ includes the transforms and motion
artifact reduction, and all others include the transforms, artifact reduction, and
the listed routine.

Fig. 4. Equivalent circuit for detection and simulation of lead-off events in
real-time.

The processing time was found to grow approximately lin-
early with the number of active channels and the length of the
time windows.

E. Lead-Off Detection and Data Imputing Implementation

Electrode disconnect events create a high impedance mis-
match between the amplifier and the leads. The analog front-
end used in this study was capable of detecting these events
by adding a 6 nA DC current source to both the positive and
negative leads of each bipolar terminal and setting the input
impedance for each amplifier to 500 M�, illustrated in Fig. 4.
During normal operation, the current is harmlessly dissipated
through both the subject and the amplifier, but saturates the
amplifier input when either or both leads are disconnected
from the subject. Hard thresholding was applied to any signal
outside the 30-70 % maximum value range of the amplifier,
corresponding to approximately ±66 μV. Signals outside of
this range were replaced with 0, the mean value for EMG
signals. This was not expected to increase the overall con-
trollability of the system, but rather to decrease the chance
of misclassifications resulting in movement when insufficient
data is available for decoding motor intention.

F. Feature Extraction and Classification

The Time Domain feature set proposed by Hudgins et al.
contains some of the most commonly investigated features in

EMG applications due to their low computational complexity
and high descriptiveness [35]. In addition, a relative compar-
ison of these and other common features suggests that this
set (composed of mean absolute value (MAV), zero crossings
(ZC), waveform length (WL), and signed slope change (SSC))
is adequate for MPR [36], [37].

The processing and memory requirements of many pattern
recognition systems limits the selection for real-time embed-
ded applications. Multi-Layer Perceptron (MLP), Support
Vector Machine (SVM), and Linear Discriminant Analysis
(LDA) are all commonly used for EMG classification [38]
and are capable of real-time implementation in an embedded
system. Multi-class support was implemented for the SVM
classifier using a “one-vs-all” scheme. The MLP classifier used
one layer of 16 hidden neurons using the hyperbolic tangent
activation function and the softmax activation function on the
output neurons. The NetLab 3.3 Neural Network library was
used for MLP classifier training on a PC [39]. The signal
detection threshold was calculated using the average MAV fea-
ture value across all rest signal windows in the training data.
Any time windows with a MAV feature smaller than this value
bypassed the classifier and were considered a rest state.

G. Training Protocol

The training data sets for the pattern recognition algorithms
in all experiments and for all movements consited of record-
ings of three second contractions repeated three times, and
each separated by three seconds of rest. Signal recordings were
taken from four sets of pre-gelled Ag-AgCl electrodes (GS26,
Bio-Medical Instruments, USA) placed in bipolar configura-
tions with approximately equal spacing around the proximal
third of each subject’s dominant forearm. Subjects were asked
to perform contractions at 70-80 % of their maximum vol-
untary contraction strength. Inactive and low-level transient
portions of each contraction were discarded such that only the
center 70 % was preserved, a value that has been empirically
found to conserve isometric and part of the dynamic portions
of muscle contractions in healthy subjects [40]. Data for train-
ing the rest classification and floor noise were obtained from
the center 50 % of each of the rest periods in the recordings. A
rest state class was included to ensure small signals that exceed
the floor noise threshold were not automatically assumed to
indicate intended movement. EMG data were separated and
concatenated into arrays corresponding to the signal in each
movement. The data arrays were then windowed, and signal
features calculated from those windows were used to construct
training, testing, and validation sets for the classifiers. Visual
cueing for contractions, signal recording, and feature extrac-
tion for classifier training were all performed using BioPatRec
running on MATLAB 2016b [40].

H. Experiment I. Offline Wavelet Parameter Selection

The sEMG recordings for evaluation and selection of appro-
priate wavelet parameters were obtained from a publicly
accessible data set of 20 subjects performing 10 wrist, hand,
and forearm movements recorded using the methodology
described in the Training Protocol section [41]. Data were
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originally sampled at 2 kHz, but were decimated to 1 kHz
and the four movements not used in the real-time analysis
were discarded. The hand open and close, wrist flexion and
extension, and forearm pronation and supination movements
were used for analysis. Classifier training data was composed
of a random selection of 90 % of the feature windows in each
movement, and testing and validation data was pooled together
in the remaining 10 %. 10-fold data cross-validation was used
to generalize the classifier performance results.

After filtering power line noise, the dominant noise sources
for sEMG signals at rest are from the electrode-skin interface,
the environment, and the amplifier itself [9]–[11]. Noise from
the amplifier used can be modeled as roughly Gaussian white
noise in the frequency range of interest [42]. Noise from
the electrode-skin interface has a pink noise spectrum with
the amplitude approaching that of the amplifier near 200-
300 Hz [11]. To the authors’ knowledge, little investigation has
been made into its probability distribution, so it was assumed
to be Gaussian. Environmental noise can depend on many fac-
tors, making it infeasible to model within the scope of this
experiment, so no attempt was made to simulate it. Based on
this information and the use of a 20 Hz high-pass filter in the
amplifier (reducing the amplitude of the electrode interference
at low frequencies), poor signal quality was modeled using
white Gaussian noise. Pseudo-random Gaussian noise was
added to each movement in the testing data and was scaled to
20 % of one standard deviation of the raw signal amplitude
for the respective movement.

Four metrics were used to compare the performance of
each of the wavelet-based signal processing algorithms: global
accuracy, the Mean Squared Error (MSE) between the original
data and the filtered original data (MSErec), the MSE between
the filtered noisy data and the original data (MSEref), and the
MSE between the filtered noisy data and the filtered original
data (MSEnoise). To reduce the burden of subject testing to a
reasonable level, only the best performing model in this test
was considered for the remainder of the experiment.

I. Experiment II. Real-Time

Nine able-bodied subjects between the ages of 22 and 29
(μ=25, SD=2.5) volunteered for the work. Real-time sEMG
signals were collected from subjects using the methodology
described in the Training Protocol section. EMG signals were
sampled at 2 kHz with 24-bit resolution and 24 V/V gain using
an ADS_BP signal acquisition unit [43]. The sEMG signals
were then decimated to 1 kHz and filtered using a second order
20 Hz IIR high-pass filter and a 50 Hz IIR notch filter. The
resulting data from these sessions and from the Motion Tests
described below were made publicly available on GitHub [41].

To evaluate the performance of the proposed wavelet pro-
cessing routine, subjects were instructed to perform two
Motion Tests, described in the section Real-Time Performance
Evaluation, with one Motion Test relying solely on the 20 Hz
high-pass and 50 Hz notch filters, and one with the addition
of wavelet processing operating on the fourth-level transform.
Subjects were instructed to start each contraction with their
elbow resting on the table and the forearm raised such that

Fig. 5. Motion artifacts were generated in real-time by having the subject
bump their wrist against the table on either side of a small obstacle during
each contraction [44].

no leads were touching the table. They were then instructed
to bump their wrist against the table once on each side of
a small obstacle, pivoting on their elbow, once during each
contraction, illustrated in Fig. 5. This action was intended to
simulate the typical case for sEMG signal transients where
the user may bump the prosthetic against an object or shift
the appendage in the socket or electrode band.

To test the efficacy of the lead-off detection and handling
subsystem, two Motion Tests were performed, one with mean
data imputing enabled, and one without any extra processing.
A single-pole double-throw continuity switch was attached
to each lead pair, Fig. 4, and operated manually using a
random number generator to indicate disconnect events. The
generator indicated new events at a pseudo-random interval
with a two second mean time interval between events with
a standard deviation of one second. Disconnect events lasted
for between approximately 0.2 and 0.5 seconds, and began
occurring immediately after starting each test.

J. Experiment III. Simulated Real-Time

To observe the effect of a higher number of signal corrup-
tion episodes, the proposed routines were tested on a series
of pre-recorded Motion Tests with artificially added noise and
sensor faults. This was done by feeding previously recorded
sEMG signals from Motion Tests into the microcontroller and
recording the resulting classifications. Standard offline analy-
sis of EMG data is often an unreliable indicator of real-time
performance, likely due to the loss of feedback and the sequen-
tial nature of the data [45]. Using pre-recorded Motion Tests
still distorts the feedback effect, due to changes in signal and
processing, but maintains the structure and order of the sEMG
signals.

The simulated tests were performed on a separate data
set where sEMG signals were recorded from the left arms
of 15 able-bodied subjects performing 10 wrist and forearm
movements using the methodology described in the Training
Protocol section [40]. This data set was recorded at 2 kHz with
a second order digital high-pass filter at 20 Hz and a notch fil-
ter centered at 50 Hz. It also contained sEMG data from both
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Fig. 6. Examples of contact motion during rest (left panel), contact motion
during contraction (middle panel), and cable motion (right panel).

the pattern recognition training and the full Motion Tests. As
the EMG data for the tests were recorded using different time
window parameters, only the first 128 ms in each time window,
after decimating to 1 kHz, was extracted to form the training
and testing sets. This made it possible to send the recordings
to the embedded system for processing while maintaining as
much of the original structure of the data as possible.

The EMG data used for comparing wavelet processing
with conventional filtering were modified with a set of
previously recorded motion artifacts [15]. Artifacts were origi-
nally recorded at 2 kHz using Ag-AgCl bipolar electrodes and
were generated by tapping the electrodes, cable movement, and
rapid arm movement while the subjects’ muscles were at rest.
Motion artifact magnitude was experimentally determined to
extend up to 150 times the standard deviation of normal EMG
signals, with smaller perturbations mimicking real-life scenar-
ios resulting 1 to 10 times EMG standard deviation amplitude.
The artifacts, examples of which are shown in Fig. 6, were dec-
imated and filtered to match the properties of the test EMG
signal. For each time window in the Motion Test, random arti-
facts were added on at least one channel (chosen at random)
at random offsets with magnitudes corresponding to between
1 and 10 times the standard deviation of the signal strength
of that window.

Wavelet processing, when applicable, and pattern classifica-
tion were performed on the microcontroller using a pre-trained
LDA classifier by providing each time window over a serial
connection and reading the resulting classifications. This test
included wavelet-based artifact reduction using the third- and
fourth-level transforms in addition to conventional filtering.

Noise recorded from a set of disconnected leads using the
same setting as the Motion Tests was used as the data source
for simulating lead-off events. The noise was then decimated
to 1 kHz and separated into 128 ms time windows. Motion
Test data on at least one channel (selected at random) on each
time window were replaced with either a random sample of
recorded noise (for conventional handling) or zeros (for mean
data imputing).

Neither artifacts nor lead-off events were simulated for the
training data, but to compensate for the non-linear effects
wavelet processing has on the data, the appropriate routine
was applied to both the training and testing data for that case,
illustrated in Fig. 7. The ground truth for the simulated tests
in both cases was determined by running the classifier against
the recorded Motion Tests without simulated LOEs or motion
artifacts and saving the positions of the correct classifications.
Any incorrect predictions made in this situation were ignored,

Fig. 7. Block diagram showing the training and testing procedure used to
evaluate wavelet-based motion artifact reduction on pre-recorded motion tests.

as the proposed algorithms were not expected to significantly
increase the predictive power of the classifiers on clean data
sets.

K. Real-Time Performance Evaluation (Experiments II-III)

A modified version of Kuiken et al.’s Motion Test [46] was
used to generate data for the real-time evaluation used in this
work. Subjects were visually cued to perform trials of three
random permutations of the movement set for each test. They
were asked to hold the cued contractions at 70-80 % of max-
imum voluntary contraction strength until the system made
20 correct predictions or for up to 10 seconds. Signal record-
ing, data visualization, classifier training, and visual cueing
were all controlled using the BioPatRec software suite run-
ning on MATLAB 2016b [40]. The mean per-class accuracy,
specificity, sensitivity, precision, and false activation error,
described below, across all classes were used as performance
metrics for all tests in addition to completion time, selection
time, and completion rate. The completion time and comple-
tion rate were not calculated for the simulated experiments, as
the biofeedback the Motion Tests rely on was lost when the
signal processing algorithm was changed. Specificity, sensitiv-
ity, and precision metrics were included to compensate for the
inherent bias of global accuracy [45], [47].

The conventional calculation for error rates in multi-class
systems weight all misclassifications equally, and therefore it
is not useful for measuring the likelihood that a system will
reject a classification based on uncertainty or missing data val-
ues. In order to account for this, we employed an additional
metric referred to in this work as the False Activation Error
(FAE), defined as the percentage of class-wise false negative
misclassifications resulting in movement. This calculation is
similar to the standard class-wise error rate, but does not penal-
ize “rest” misclassifications. FAE was originally proposed by
Hargrove et al. [12] to accommodate for the disproportionately
detrimental effects of misclassifications resulting in unintended
movements. This extra metric was used to show the difference
in unintended movements resulting from LOEs and motion
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Fig. 8. Experiment I. Offline accuracy change (left) and Mean Squared Error comparison (right) of wavelet-based processing vs. conventional processing.
Data shown are median values (circle with dot), inter-quartile range (thick bar), and data range (thin bar), with hollow circles as data outliers. Motion artifact
reduction using LDA classifier showed the only apparent accuracy improvement (ns).

artifacts produced by the proposed algorithms. For instance, if
an LOE occurred during a close hand movement, the system
would ideally reject data from the affected electrodes, reduc-
ing the chance of interpreting an unintended movement, such
as open hand or wrist rotation, until the electrodes regained
connectivity. Wilcoxon signed rank tests were used on subject-
specific means on each metric independently for statistical
analysis using Bonferroni correction to adjust for multiple
comparisons.

Classifier training and artifact reduction on the training
data were performed on a PC. All other processing steps
for the testing data, including digital filtering, wavelet-based
processing, feature extraction, and pattern classification, were
implemented on the microcontroller to allow for independent
and mobile operation in prosthetic devices. Pattern recogni-
tion algorithms were trained using a data set recorded prior to
each set of comparative tests. Embedded processing was per-
formed on a Texas Instruments ARM Cortex-M4 processor; a
full description of the hardware can be found in [43].

III. RESULTS

A. Wavelet Parameter Selection

Motion artifact reduction with the LDA classifier without
wavelet denoising was the only set of parameters that indicated
any numerical global accuracy improvement over conventional
filtering (ns), Fig. 8 left panel. This configuration also showed
the smallest signal distortion for the reference signal compared
to the noisy signal, indicating it would have the most positive
effect on reduction of signal corruption, Fig. 8 right panel.

B. Real-Time Test Results

Real-time test results between conventional filtering and
wavelet-based artifact reduction showed no significant dif-
ferences, Fig. 9a. Real-time data imputing tests showed a
decrease in precision (p < .05) of 12.0 percentage points

(pp), but showed no other significant differences between data
imputing and conventional filtering, Fig. 9b. A full summary
of the results is reported in Table II.

C. Simulation Test Results

The third-level wavelet processing performed best on
all metrics in simulation tests except selection time with
an improvement in accuracy over conventional filtering by
1.80 pp (p < .001), in sensitivity by 2.90 pp (p < .001),
in specificity by 1.9 pp (p < .001), in FAE by 22.9 pp
(p < 0.001), and in precision by 5.00 pp (p < .001),
Fig. 9a. The third-level transform increased the selection time
by 327 ms (p < .01), indicating that the system took longer
to register that a correct movement was being attempted by
a significant degree in the presence of artifacts. The fourth-
level transform showed an increase in accuracy by 1.20 pp
(p < .001), in specificity by 1.30 pp (p < .001), and FAE
by 16.6 pp (p < .001), with no significant change in sensi-
tivity, precision, or selection time. Data imputing showed an
improvement in accuracy of 4.50 pp (p < .001), in specificity
of 6.00 pp (p < .001), in precision of 3.40 pp (p < .05),
and in FAE by 54.3 pp (p < 0.001). Data imputing showed
reduced performance in sensitivity of 9.33 pp (p < .001) and
in selection time by 906 ms, Fig. 9b. A full summary of the
results is reported in Table II.

IV. DISCUSSION

Phinyomark et al.’s work on wavelet denoising showed sig-
nificant noise reduction in EMG signals, but the investigation
was limited to the MAV feature, leaving its effect on other
signal features in question [16]. The only literature found
investigating the effect of denoising with short time windows
on overall classifier accuracy only showed a relatively small
improvement for the MLP classifier and was implemented
with more neurons than considered feasible for real-time
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Fig. 9. Box plot of real-time (RT) and simulated real-time (Sim) metrics comparing the proposed wavelet-based motion artifact reduction (a) and data
imputing (b) routines with conventional signal processing on an embedded system. Data shown are values (circle with dot), inter-quartile range (thick bar),
and data range (thin bar), with hollow circles as data outliers. The wavelet processing algorithm used third- and fourth-level transforms, meaning motion
artifacts were assumed to have their dominant energy in the 0-62.5 Hz and 0-31.25 Hz frequency bands, respectively.

TABLE II
SUMMARY OF REAL-TIME AND SIMULATED RESULTS. VALUES ARE MEDIANS (IQR)

implementation in this experiment [15]. Wavelet-based denois-
ing may have an unseen positive effect on noise sources
that more closely match real-world use, but our experiments
showed it degraded performance compared to conventional
filtering when presented with sEMG signals corrupted with
Gaussian noise. Additionally, the current investigation used
pre-gelled Ag-AgCl electrodes, which have different electrical
characteristics than stainless-steel dry electrodes typically seen
in commercial prostheses. While motion artifacts and LOEs
likely exhibit the same signal properties using either electrode
material, recordings taken from dry electrodes may include

additional noise that would be removed via the proposed signal
denoising routine. This limitation will be addressed in future
work. The processing time for wavelet-based signal process-
ing was found to increase roughly linearly with the number
of active channels, which potentially limits its applicability in
real-time processing on systems with a high number of chan-
nels. However, the added delay was not sufficient enough to
noticeably degrade system performance in this application.

The real-time experiments showed little effect from either
artifact reduction or data imputing. This suggests either that
the protocol used in the real-time portion of the present work
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generated an insufficient number of signal artifacts to simu-
late real-life scenarios or that signal artifacts do not present
a significant problem in real-life scenarios. The motion arti-
facts corrupting the EMG signals in the Motion Tests were
on the order of 100 ms. With a window overlap of 64 ms,
up to six windows could have been corrupted by motion arti-
facts from hitting the table both times, plus any that occurred
during the transit of the forearm above the table. Given that
an evaluation per movement lasts up to 10 seconds (approx-
imately 150 time windows), the motion artifacts could only
affect a small portion of the total predictions. This was insuf-
ficient to cause a significant difference in the Motion Test
outcomes, and hence the need of the simulated experiments
where the signals were artificially corrupted more frequently.
Similar logic applies to the small difference found when com-
paring conventional filtering to mean data imputing, as the
lead-off events lasted between 0.2 and 0.5 seconds. In daily use
and out of controlled environments, the number of episodes
in which such artifacts could frustrate the user is unknown
and difficult to estimate. Factors related to prosthetic fitting,
such as hardware, activity level, and stump condition, would
influence susceptibility to artifacts and their incidence. These
factors were not investigated in the current work, but an
investigation into the error and False Activation Error caused
by signal artifacts in daily life activities and their effects
on perceived system performance will be investigated in
future work.

The simulated experiments were expected to highlight any
changes too subtle to see in the real-time tests. Artifact
reduction using a third-level wavelet transform showed better
performance than the fourth-level transform along some met-
rics (p < .05), indicating frequency components in the motion
artifacts extended past the 31.25 Hz boundary addressed
by the fourth-level approximation coefficients. Clancy et al.
suggested cable motion artifacts can extend up to around
50 Hz [48], which was corroborated by our results. This may
partially explain the lack of improvement seen in the real-
time experiment, as only the fourth-level transform was tested.
Using a decreased transform order also reduced the compu-
tational complexity and memory requirements of the artifact
reduction routine, but further increased the selection time.
Results for the simulated data imputing tests were more mixed,
showing an improvement in performance regarding accuracy
and specificity, but decreased sensitivity and slower selection
time. The results also showed the dramatic improvement in the
False Activation Error, indicating that the number of misclas-
sifications resulting in unintended movements was effectively
reduced, but at the cost of a significant increase in the selection
time. However, given that LOEs and motion artifacts are typi-
cally short-term signal corruption sources in prosthetic sockets,
the reduced responsiveness indicated by the selection time
is unlikely to significantly hamper the overall controllability.
Based on the slower selection time and the higher FAE, both
algorithms appear to bias the classifier towards making either
the ground truth movement or no movement at all for the dura-
tion of the signal corruption events. These results suggest that
mean data imputing is a potentially useful strategy for han-
dling LOEs during continuous sEMG classification, given that

a short-term reduction in responsiveness is often preferable to
unintended movements.

Increases in most of the performance metrics in the simu-
lated experiments came at the cost of a significant increase in
selection time for both data imputing and artifact reduction,
reducing the system responsiveness during channel corruption.
It is noteworthy to emphasize that at least one channel was
corrupted with a lead-off event or motion artifact on every
time window. As such, these results serve as a worst-case sce-
nario rather than a typical use-case, and as seen in the offline
analysis results, neither method had a significant impact on
the signal when no artifacts or noise were present. Based on
the results, the proposed algorithms would tend to produce
no actions during periods of fast limb movements, when the
stump shifts in the socket, or when a load is applied to the
end of the prosthetic. In each of these scenarios, producing
no movements is likely the desired outcome. More investiga-
tion needs to be done on how the proposed algorithms affect
the controllability and responsiveness of prosthetic devices in
real-life environments.

Having an effective implementation of artifact reduction
and data imputing on a mobile processing platform allows
for investigation into their effects in real-life prosthetic use.
We have previously developed an evaluation method using
an embedded system in which the subject can report per-
ceived misclassification while operating the prosthesis in daily
life and for long periods of time [49]. The Assessment for
Capacity of Myoelectric Control [50], the Activities Measure
for Upper Limb Amputees [51], and the Southampton Hand
Assessment Procedure [52] all provide insight into prosthetic
controllability with respect to functional tasks simulating real-
world environments, but they are cross-sectional in nature (a
single point in time) and are not performed out in the real
world. These assessments could be performed using a wire-
less interface to a base station for all the required processing
without interfering with the subject mobility. However, such
strategy cannot be used in daily life where the subject will
encounter variable sources of noise and face motion arti-
facts owning to different activities. Further work will focus
on evaluating the present algorithms in such circumstances.

V. CONCLUSION

In this work, we investigated the feasibility and effec-
tiveness of implementing wavelet-based signal processing
and data imputing for continuous sEMG classification on a
self-contained prosthetic system. We proposed a novel and
efficient method for EMG signal imputing and modifications
to existing wavelet denoising and artifact reduction routines
to allow for their implementation on a wearable prosthesis.
Wavelet denoising proved ineffective for removing wide-band,
Gaussian noise. Real-time tests failed to show a significant
effect using the proposed routines, but increasing the rate of
errors in simulated tests highlighted the benefits and caveats
of the routines. Simulated tests showed significant increases in
many performance metrics (namely the reduction of erroneous
movements), but also showed a large increase in selection time,



NABER et al.: STATIONARY WAVELET PROCESSING AND DATA IMPUTING IN MPR ON A LOW-COST EMBEDDED SYSTEM 265

reducing the system responsiveness during channel corrup-
tion events. Having these systems implemented for real-time
classification on a self-contained prosthesis reduces the bar-
rier for more realistic assessment, and it could help bring
pattern recognition-based prosthetic devices to wider clinical
implementation.
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